许多基于模型的强化学习方法(MBRL)为他们可以提供的马尔可夫决策过程(MDP)模型的准确性和学习效率提供了保证。同时,状态抽象技术允许减少MDP的大小,同时相对于原始问题保持有限的损失。因此,令人惊讶的是,在结合两种技术时,即MBRL仅观察抽象状态时,没有任何保证可用。我们的理论分析表明,抽象可以在网上收集的样本(例如在现实世界中)引入依赖性,这意味着MBRL的大多数结果不能直接扩展到此设置。这项工作的新结果表明,可以使用Martingales的浓度不平等来克服此问题,并允许将R-MAX等算法的结果扩展到以抽象为设置的算法。因此,通过抽象的模型为抽象的RL生成了第一个性能保证:基于模型的强化学习。
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
The paper discusses the improvement of the accuracy of an inertial navigation system created on the basis of MEMS sensors using machine learning (ML) methods. As input data for the classifier, we used infor-mation obtained from a developed laboratory setup with MEMS sensors on a sealed platform with the ability to adjust its tilt angles. To assess the effectiveness of the models, test curves were constructed with different values of the parameters of these models for each core in the case of a linear, polynomial radial basis function. The inverse regularization parameter was used as a parameter. The proposed algorithm based on MO has demonstrated its ability to correctly classify in the presence of noise typical for MEMS sensors, where good classification results were obtained when choosing the optimal values of hyperpa-rameters.
translated by 谷歌翻译
The deployment of neural networks on heterogeneous SoCs coupled with custom accelerators is a challenging task because of the lack of end-to-end software tools provided for these systems. Moreover, the already available low level schedules and mapping strategies provided by the accelerator developers for typical tensor operations are not necessarily the best possible ones for each particular use case. This is why frameworks which automatically test the performance of the generated code on a specific hardware configuration are of special interest. In this work, the integration between the code generation framework TVM and the systolic array-based accelerator Gemmini is presented. A generic schedule to offload the GEneral Matrix Multiply (GEMM) tensor operation onto Gemmini is detailed, and its suitability is tested by executing the AutoTVM tuning process on it. Our generated code achieves a peak throughput of 46 giga-operations per second (GOPs) under a 100 MHz clock on a Xilinx ZCU102 FPGA, outperforming previous work. Furthermore, the code generated by this integration was able to surpass the default hand-tuned schedules provided by the Gemmini developers in real-world workloads.
translated by 谷歌翻译
An algorithm and a program for detecting the boundaries of water bodies for the autopilot module of asurface robot are proposed. A method for detecting water objects on satellite maps by the method of finding a color in the HSV color space, using erosion, dilation - methods of digital image filtering is applied.The following operators for constructing contours on the image are investigated: the operators of Sobel,Roberts, Prewitt, and from them the one that detects the boundary more accurately is selected for thismodule. An algorithm for calculating the GPS coordinates of the contours is created. The proposed algorithm allows saving the result in a format suitable for the surface robot autopilot module.
translated by 谷歌翻译
Artificial Intelligence (AI) and its data-centric branch of machine learning (ML) have greatly evolved over the last few decades. However, as AI is used increasingly in real world use cases, the importance of the interpretability of and accessibility to AI systems have become major research areas. The lack of interpretability of ML based systems is a major hindrance to widespread adoption of these powerful algorithms. This is due to many reasons including ethical and regulatory concerns, which have resulted in poorer adoption of ML in some areas. The recent past has seen a surge in research on interpretable ML. Generally, designing a ML system requires good domain understanding combined with expert knowledge. New techniques are emerging to improve ML accessibility through automated model design. This paper provides a review of the work done to improve interpretability and accessibility of machine learning in the context of global problems while also being relevant to developing countries. We review work under multiple levels of interpretability including scientific and mathematical interpretation, statistical interpretation and partial semantic interpretation. This review includes applications in three areas, namely food processing, agriculture and health.
translated by 谷歌翻译
We explore unifying a neural segmenter with two-pass cascaded encoder ASR into a single model. A key challenge is allowing the segmenter (which runs in real-time, synchronously with the decoder) to finalize the 2nd pass (which runs 900 ms behind real-time) without introducing user-perceived latency or deletion errors during inference. We propose a design where the neural segmenter is integrated with the causal 1st pass decoder to emit a end-of-segment (EOS) signal in real-time. The EOS signal is then used to finalize the non-causal 2nd pass. We experiment with different ways to finalize the 2nd pass, and find that a novel dummy frame injection strategy allows for simultaneous high quality 2nd pass results and low finalization latency. On a real-world long-form captioning task (YouTube), we achieve 2.4% relative WER and 140 ms EOS latency gains over a baseline VAD-based segmenter with the same cascaded encoder.
translated by 谷歌翻译
The success of Deep Generative Models at high-resolution image generation has led to their extensive utilization for style editing of real images. Most existing methods work on the principle of inverting real images onto their latent space, followed by determining controllable directions. Both inversion of real images and determination of controllable latent directions are computationally expensive operations. Moreover, the determination of controllable latent directions requires additional human supervision. This work aims to explore the efficacy of mask-guided feature modulation in the latent space of a Deep Generative Model as a solution to these bottlenecks. To this end, we present the SemanticStyle Autoencoder (SSAE), a deep Generative Autoencoder model that leverages semantic mask-guided latent space manipulation for highly localized photorealistic style editing of real images. We present qualitative and quantitative results for the same and their analysis. This work shall serve as a guiding primer for future work.
translated by 谷歌翻译
Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.
translated by 谷歌翻译